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Abstract. The indirect exchange interaction between localized Cu spins via mobile O holes
is derived from the three-band Anderson lattice model for copper oxides for infinite Hubbard
repulsionUd at Cu sites. By means of two nested canonical transformations, Ruderman–Kittel–
Kasuya–Yosida (RKKY) and superexchange interactions are found in the fourth order of the
Cu–O hybridization amplitude, where both O bands are consequently taken into account. For
nearest neighbours the RKKY couplingJRKKY and the superexchange integralJ sup ex, which
increase with the direct O–O transfer, differ in sign and undergo a sign change upon doping.
JRKKY overcompensatesJ sup ex.

1. Introduction

The competition between ferromagnetic and antiferromagnetic correlations in a doped CuO2

layer of high-Tc superconductors can be ascribed to the interplay of a Ruderman–Kittel–
Kasuya–Yosida-type (RKKY-type) interaction [1] and Anderson’s superexchange [2]. In
metallic copper oxides the indirect exchange between the localizable Cu (d) spins is mediated
by the itinerant O (p) holes. A standard procedure for deriving an effective Cu–Cu spin
coupling is to start from the Anderson lattice model, including a large or infinite Mott–
Hubbard repulsionUd at Cu sites, and to perform a Schrieffer–Wolff transformation [3]
with the Cu–O hybridization amplitudetdp as a small parameter. So the superexchange
can be found in the fourth order oftdp [4, 5]. On the other hand, the RKKY term can be
obtained in the fourth order oftdp by eliminating the Kondo lattice term of second order in
tdp; this perturbative origin was already described in [6, 7]. Both superexchange and RKKY
exchange were deduced on the basis of the Anderson lattice model by means of slave-
boson and path-integral approaches [8], a linked-cluster expansion [9], or two subsequent
canonical transformations [10–13].

In this paper we propose two nested canonical transformations for calculating the
superexchange and the RKKY exchange in the limitUd → ∞ for the CuO2 plane under
hole doping. Consequently, the band and hybridization dispersions arising from the two O
bands are taken into account.

The Anderson lattice model is used to describe a single CuO2 layer in the hole
representation relative to a filled-shell (3d10, 2p6) configuration. The corresponding three-
band Hamiltonian [4, 5]

H = H0+H1 (1)
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is decomposed into the unperturbed part

H0 = εd

∑
i

nd
i +

∑
kνσ

ενpkp
ν+
kσ p

ν
kσ + Ud

∑
i

nd
i↑n

d
i↓ (2)

with the O-band dispersion
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and the perturbation
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in terms of the hybridization
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Within a mixed lattice–wavevector (i–k) representation, the operatord+iσ creates a hole with
spinσ in the 3dx2−y2 orbital at Cu sitei andnd

i =
∑

σ n
d
iσ =

∑
σ d
+
iσ diσ is the corresponding

number operator. The O-hole creation operatorpν+kσ with the band indexν = 1, 2 arises
from the 2px, 2py orbitals in the unit cell. The parameters in (2) to (5) are the atomic
energiesεd and εp for d and p holes, the direct O–O hopping amplitudetpp, the Hubbard
interaction strengthUd at a Cu site, and the Cu–O hybridization amplitudetdp. Moreover,a
is the nearest-neighbour Cu–Cu distance,N the total number of Cu sites,k1 = kx , k2 = ky ,
andRi denotes the position vector of theith Cu ion.

2. Perturbative treatment of the Anderson lattice model

In view of the decomposition (1) we treat, by assumingtdp� εp − εd � Ud, the hybridiz-
ation term (4) perturbatively. This assumption of a charge-transfer insulator situation is
justified in principle for the CuO2 planes in the high-Tc superconductors. Band-structure
calculations (e.g. in [14]) show that for the parent cuprate compounds the parameter
inequalitiestdp < εp− εd < Ud are valid.

Let us perform two unitary transformations nested by the definition

H ′′ = e−S2H ′eS2 = e−S2e−S1HeS1eS2. (6)

The first generatorS1 leading toH ′ is determined by the condition

H1+ [H0, S1] = 0 (7)

in the sense of a Schrieffer–Wolff transformation [3]. Decomposing the second-order result
for H ′ as

H ′2 =
1

2
[H1, S1] = H ′2a+H ′2b (8)

we quote (cf. [5]) the following expressions forUd→∞:
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with

ενk = ενpk − εd > 0. (10)

In the Kondo lattice part (9b), Si = 1
2

∑
σσ ′ d

+
iσσσσ ′diσ ′ (σ being the vector of the Pauli

matrices) denotes the localized Cu-spin operator, whereassνν
′

kk′ = 1
2

∑
σσ ′ p

ν+
kσσσσ ′p

ν ′
k′σ ′

involves the itinerant O spin. In order to remove the Kondo term we choose the second
generatorS2 from (6) to satisfy

HKondo
2 + [H0, S2] = 0. (11)

Now we are going over fromH ′′ to an effective Hamiltonian

Heff = H0p+H2p+H4I +H4II (12)

which is (i) truncated at order oft4dp and (ii) projected onto the subspace of single Cu-hole

occupancy, i.e.nd
i = 1, according to the limitUd → ∞. The contributions in (12) are

given, on the basis of (2) and (6) to (11), by
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H4I = 1

8
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(15a)

H4II = 1

2

[
([H1, S1] −HKondo

2 ), S2
] ∣∣∣
nd
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where the term of third order intdp disappears due to the constraintnd
i = 1. For clarification,

the projection onto the subspacend
i = 1 is carried out only at the end of the calculation,

i.e. after the expansion ofH ′′ up to the order oft4dp. This means, in particular, that the terms
of third order intdp, which emerge alone from the first transformationH ′, are projected out
after having generated the fourth-order contributions of the triple commutator. From (15)
we retain only such fourth-order contributions as survive under the projection (ii).

3. Extraction of the indirect exchange interactions

The resultantHeff, ascribed to localized Cu spins and mobile O holes, involves spin–spin,
spin–spin–hole, spin–hole, spin–hole–hole, and hole–hole interactions. Among a lot of terms
inherent in (15), we extract here only the indirect exchange interaction of the Heisenberg
model form

H ind ex
4 =

∑
ij

(i 6=j)

JijSi · Sj (16)
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with the total exchange integral

Jij = J sup ex
ij + JRKKY

ij (17)

decomposed into the superexchange and the RKKY parts. An expression of the type (16)
can be reached from the spin–spin–hole operatorSi · Sj nνµkq by averaging(〈· · ·〉0) its p
charge-density partnνµkq =

∑
σ p

ν+
kσ p

µ
qσ in a mean-field approximation with respect toH0p

from (13), i.e. replacingnνµkq by
〈
n
νµ

kq

〉
0 =

〈
nννkk

〉
0δkqδνµ.

For completeness, all the contributions arising from (15a) were given explicitly in
[5] even at finiteUd. For H4II in (15b) we find now the same spin–spin–hole operator
combinations as are listed in formula (23d) of [5]. The Heisenberg form of the exchange
between the Cu spins is in (15) always accompanied by Dzyaloshinsky–Moriya-like
interactions proportional to 2i(Si × Sj ) · sνµkq . However, such terms tend to zero under
the mean-field approximation mentioned above, namely in the sense of 2i(Si ×Sj ) · 〈sνµkq〉0.

More explicitly, we derive from (15a) the superexchange and from (15b) the RKKY
exchange integrals. Our result is

J
sup ex
ij

JRKKY
ij

Jij

 =
1

4N2

∑
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|tνk |2|tµq |2 cos
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Note that (18a) had already been derived in [4, 5]. It is pointed out thatJ
sup ex
ij as well

as JRKKY
ij include the doping dependence via the occupation number

〈
nννkk

〉
0. The doping

rateδ, i.e. the mean number of O holes per unit cell, is defined by

δ = 1

N

∑
kν

〈
nννkk

〉
0 =

2

N

∑
kν

2(εF− ενpk) (19)

whereεF denotes the Fermi energy related to (13); note thatδmax = 4. The temperature is
assumed to be zero, hereafter.

To evaluate the indirect exchange couplings we have to insert (3), (5), (10), and (19)
into (18). The procedure for exploiting (18) is outlined here as follows. (i) Consider the
case whereεF < εp and putεd = 0 as the origin of energy; (ii) replace the summations
over the first Brillouin zones by integrations; (iii) perform the summations over the band
indices by using symmetry relations; (iv) reduce the integrations to the first quadrants of
the Brillouin zones. Then we get straightforwardly, e.g. from (18b),

JRKKY
R = − 8t4dp

π4tpp

{∫ π/2

k̃x

dkx

∫ π/2

k̃y (kx )

dky

∫ π/2

0
dqx

∫ π/2

0
dqy cos(2kxRx) cos(2kyRy)

× cos(2qxRx) cos(2qyRy)
(sinkx + sinky)2(sinqx − sinqy)2

sinkx sinky + sinqx sinqy
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expressed in terms of the Fermi boundary line

k̃y(kx) =


π

2
06 kx 6 sin−1(−ε̃F) = k̃x

sin−1

(
− ε̃F

sinkx

)
k̃x 6 kx 6

π

2

with ε̃F = (εF− εp)/4tpp < 0. The range is measured asR = (Ri −Rj )/a.

Figure 1. The dependence of the nearest-neighbour superexchangeJ sup ex and the RKKY
interaction strengthJRKKY on the p-hole concentrationδ/4 for the parameterstpp = 0.4 eV
( ) and tpp = 0.55 eV (- - -) atεp − εd = 3.5 eV, tdp = 1.3 eV, andUd = ∞.

In figure 1 the nearest-neighbour (i.e.|Ri − Rj | = a) exchange integralsJ sup ex and
JRKKY resulting numerically from (18) and (20) are presented as functions of the O-hole
doping δ defined in (19). The set of parameters (εp − εd, tdp, tpp, Ud) = (3.5, 1.3, 0.4 or
0.55,∞) eV chosen here is similar (except theUd-value) to that used, e.g., in [14] for
studying La2−xSrxCuO4. The couplingsJ sup ex andJRKKY are doping sensitive, and differ
in sign and also in magnitude. The superexchange shows in figure 1 an unexpected sign
variation upon doping. The source of this behaviour must be the non-trivial topology of
the Fermi boundary line crossing both O bands. Numerical test calculations using only a
single, symmetric band always yieldJ sup ex> 0.

In figure 1 the RKKY exchange overcompensates the superexchange. The total
nearest-neighbour exchangeJ = J sup ex+ JRKKY from (18c) behaves antiferromagnetically,
ferromagnetically, and again antiferromagnetically with increasingδ and finally vanishes.
Generally, our numerical example confirms the sign change ofJRKKY in [8] and that both
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J sup ex andJRKKY increase with increasing oxygen transfer [11]. For comparison, there is
no sign change ofJ sup ex in [8]. Moreover,J sup ex in [10, 13] is not renormalized bytpp and
is assumed to be independent ofδ. It should be mentioned that we consequently used two
O bands, in contrast to making calculations with a simple parabolic band [8, 10], a single
O band [11, 13], or an additional apical-O (2pz) orbital [12].

To conclude, we examined here only the magnetic correlations between the Cu spins
in the normal state of cuprate superconductors. The present scheme implies the constraint
nd
i = 1, i.e. there is exactly one hole per Cu site. But the case wherend

i 6= 1 is also
of interest. Recent analysis of the electric field gradients in high-Tc superconductors [15]
shows that the holes introduced by doping are nearly equally shared among the Cu and O
ions. Considering the complete collection of the 64 operator products in (15a), without the
prescriptionnd

i = 1 one cannot extract Cu–Cu spin combinations weighted bynd
i . Indeed,

indirect exchange interactions are not eliminated by projection.
Note that a derivation of an effective Heisenberg-type spin interaction between localized

magnetic moments via fourth-order perturbation theory in the hybridization (with conduction
electrons) has been carried out in the literature also for several other (non-cuprate) systems.
Work along these lines was done, e.g. to get RKKY exchanges and superexchanges from
one unified approach for rare-earth compounds [16], to calculate the exchange parameters
for transition-metal monoxides [17], or to determine corrections to the RKKY interaction
in spin-glass systems [18].

A detailed analysis of the complete spin–hole Hamiltonian generated by the two nested
unitary transformations, also at finiteUd, will be presented elsewhere [19].
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